MEETING DATE: December 20, 2016

TITLE: Covina Senior and Community Center Project - Designation of Final Site for Placement of New Center

PRESENTED BY: Siobhan Foster, Director of Public Works

RECOMMENDATION:
1) Receive and file the Covina Woman’s Club Physical Assessment for Adaptation to Covina Senior and Community Center Report, prepared by Gonzalez Goodale Architects; and
2) Provide direction regarding the final site for the placement of the Covina Senior and Community Center.

BACKGROUND:
Since September 2015, the City Council, City Manager, multi-departmental staff team, community members, and Gonzalez Goodale Architects (GGA) have been working on the development of the new Covina Senior and Community Center. Numerous actions facilitating the development of the new facility have been taken to date, as outlined in the Project Chronology contained in Attachment A to this report, and are culminating in the discussion of final site selection this evening.

Most recently, on October 4, 2016, the City Council directed City staff to pursue the placement of the Covina Senior and Community Center in Kelby Park and at the site of the Covina Woman's Club. The City Council also approved and authorized the Interim City Manager to execute on the City Council's behalf, in substantial form, the First Amendment to the Agreement between the City of Covina and GGA to (1) extend the term of the agreement through June 30, 2017, (2) amend the scope of work to (a) reflect the placement of the Covina Senior and Community Center at a location to be designated by the City Council and (b) prepare a General Building and Site Analysis of the Covina Woman's Club, (3) increase the total compensation by $20,000 to a not-to-exceed amount of $120,000, and (4) include provisions required for compliance with federal law and Community Development Block Grant (CDBG) requirements, subject to the City Attorney's review and approval as to form.

By conducting the Building and Site Analysis of the existing Covina Woman's Club, the City is able to ascertain whether the remodel and expansion of the Covina Woman's Club is a logistical and economically feasible option. This information should assist the City Council in making a formal site selection for placement of the new facility.

DISCUSSION:
On October 4, 2016, GGA was commissioned by the City of Covina to provide a General Building and Site Analysis of the Covina Woman’s Club. This followed a brief conceptual site
study that explored the spatial feasibility of expansion and renovation of the Covina Woman’s Club for a broader use as the new Covina Senior and Community Center.

The approximately 9,000 square foot Covina Woman’s Club was constructed in 1961. Building and safety codes in most categories have become more stringent since that date. Additionally, aging architectural and engineering systems within the building will face replacement and repair needs as the building is adapted to new uses.

GGA submitted the attached Covina Woman’s Club Physical Assessment for Adaptation to Covina Senior and Community Center Report to the City in mid-November 2016. The report identifies the improvements, upgrades, and renovations that will be necessary and desirable to:

1. Adapt and update the functional performance of the building to suit safe, efficient, and enjoyable facility operations, achieving a level of improvement that could be reasonably expected to satisfy the Covina Senior and Community Center needs of the City, as applicable, for fifty years or more;

2. Adapt and update the interior and exterior architectural components and the engineering systems of the building to satisfy a minimum fifty-year performance level; and

3. Where required, or otherwise deemed prudent, meet current fire/life-safety, structural/seismic, environmental, and accessibility requirements under applicable building codes, laws, rules, and regulations.

Following the review of both the existing drawings and a tour of the facility, GGA analyzed the building within the bounds of the following criteria, as specified on page 2 and 3 of the report:

1. **Zoning Code** – the building has been evaluated according to current City of Covina Zoning Code;

2. **Fire/Life-Safety/ Building Codes** – the building has been evaluated according to the 2016 California Building Code for issues of exiting and fire/life-safety in general. Consideration has also been given to how a building addition might affect compliance with these codes;

3. **Energy Performance/Building Codes** – the building’s energy design and performance has been evaluated against the requirements of 2016 California Title 24 and Chapter 11, Green Building Standards. Upgrades will be required for any new components and any of the components of the building that will be modernized;

4. **Site Conditions and Best Practices** – the site, including issues of pedestrian and vehicular arrival, drop-off, parking, site drainage, and landscape, have been evaluated according to California Title 24 accessibility requirements, wear/condition of various site components, professional experience of best practices, and aesthetic quality;

5. **Accessibility** – the building has been evaluated for accessibility as required by California Title 24 and the Americans with Disabilities Act (ADA). Accessibility includes access to building entries and exits, interior doors and occupied spaces, passageways, restroom fixtures and drinking fountains, counters, hardware, seating areas, and way-finding signage;
6. **Operational Analysis** – the floor planning has been assessed in the context of possible expansion against professional experience and best practices for Covina Senior and Community Center adjacencies and operations;

7. **Architectural and Engineering Components** – in addition to obvious defects, the documented or observed age and quality of architectural and engineering components has been assessed against occupant health and welfare, against professional experience, and against industry standards for wear and performance; and

8. **Structural System** – in terms of structure and seismic performance, the building has been assumed to be Risk Category II and evaluated against the criteria of this Category. This means that, in a seismic event, the building should be able to sustain the event and preserve the safety of the occupants. Structure should not be in danger of collapse, and affixed elements of the building should remain affixed. Under this category, however, there may be both structural and architectural damage, and the building may not be appropriate for immediate occupancy because of damage.

Pages 26 to 30 of the report contain numerous recommendations in each of the areas outlined above. Key recommendations include, but are not limited to, the following:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zoning Code</td>
<td>Covina Senior and Community Center type of use is permitted in this residential zone with Conditional Use Permit.</td>
</tr>
<tr>
<td>2. Fire/Life-Safety/Building Codes</td>
<td>Incorporate fire sprinkler system into the building to increase fire/life-safety and allow an increase in building area to that required for a full Covina Senior and Community Center program.</td>
</tr>
<tr>
<td>4. Site Conditions and Best Practices</td>
<td>Remove and replace parking lot asphalt due to extensive deep cracking and increase accessible spaces beyond that required by code (appropriate to a Covina Senior and Community Center).</td>
</tr>
<tr>
<td></td>
<td>Develop positive site drainage throughout site and comply with California storm water regulations, mitigating flow of storm water drainage into streets and storm sewer systems.</td>
</tr>
<tr>
<td>5. Accessibility</td>
<td>Direct accessible walkway from public sidewalk to main entry of the building.</td>
</tr>
<tr>
<td></td>
<td>Interior upgrades necessary to achieve full accessibility include partial demolition/reconstruction of the entry wing of building, new doors and lever or panic hardware, new accessible restrooms, accessible drinking fountains, disabled access to multipurpose room stage, new or re-configured casework to provide accessible-height countertops, way-finding signage, and fire/life-safety interventions that provide alarm notification to all occupants, including blind and deaf.</td>
</tr>
<tr>
<td>Criteria</td>
<td>Recommendation</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>6. Operational Analysis</td>
<td>– Due to inefficiency and inaccessibility of much of Entry Wing, consider complete re-planning/re-design of this interior space to better suit Covina Senior and Community Center program.</td>
</tr>
</tbody>
</table>
| 7. **Architectural and Engineering Components** | – Re-roof existing facility and repair water damage to plaster soffits. Sand and refinish water damage to wood soffits.
– New HVAC systems and overhead ducting.
– Upgrade existing plumbing fixtures, lavatories, and toilet flush valves to latest code for water savings measure.
– Convert all lighting in building to LED and provide networked lighting controls throughout.
– Disaggregation of electrical loads is required. Separate feeders and panels need to be available for lighting, outlets, equipment loads, and HVAC loads. |
| 8. **Structural System** | – City may consider implementing voluntary seismic improvements to improve seismic performance, considering age of building. Based on this building type, highest priority voluntary improvements may include, but are not limited to:
 a. Plywood sheathing on wood-framed shear walls;
 b. Roof diaphragm sheathing and nailing;
 c. Sill bolting at all bearing walls and shear walls to existing concrete slab/foundations. Sill bolting appears to be installed in this building per the 1960 as-built drawings, therefore, this may only consist of verifying that existing condition is sufficient and may not require that new sill bolts be installed;
 d. Hold downs at ends of wood-framed shear walls;
 e. Strapping/ties from exterior walls to roof diaphragm;
 f. Diaphragm collectors and their connections to shear walls; and
 g. Concrete foundations.
– Further investigation of existing structure to determine presence and/or extent of water-damaged elements, as water damaged building finishes were observed at several locations throughout building. This investigation may involve demolition of existing ceilings and gypsum board to view structure. |

Pages 31 and 32 of the report contain the construction cost estimate to renovate and add to the Covina Woman’s Club to achieve a well-functioning and aesthetically-integrated Covina Senior and Community Center. At this early stage of analysis and planning, the estimate must be considered as a rough order of magnitude estimate, which will require refinement and confirmation through the design process.

This estimate is projected for site, building renovation, and construction costs only. The estimate does not include anticipated and necessary “soft costs” that will be incurred by the City, such as fees, testing, project management costs, furniture, fixtures, and equipment. Soft costs typically are approximately 25% to 30% of the construction cost, and a project contingency equivalent to 10% of the total project cost should be utilized at this juncture due to the imprecision of the estimate at this stage.
To develop the preliminary cost estimate, anticipated per-square-foot costs are established for site work, renovation of the existing Covina Woman’s Club building, and new construction. To estimate at per-square-foot estimates for each of these components, a combination of current industry costs for similar types of construction, major components to be deployed in a renovation, and current industry costs for site work are considered. The figures are based on prevailing wage and include approximately 25% additional for both contingency and escalation.

The following considerations were included in developing these per-square-foot cost averages:

1. **Site work** – costs include re-asphalting the parking lot, new landscaping and irrigation. An average of $7/square foot is anticipated to cover overall site re-surfacing and landscaping, new parking/site lighting, minor re-grading for storm water, and provision for accessibility from sidewalk to entry porch;

2. **Renovation work** – costs include new exterior windows, doors and cladding, new wall insulation, new roof, new modifications to support accessibility, new door hardware throughout, significant new floor finishes, new ceilings, new lighting and electrical control systems, new mechanical and fume hood systems, new fire sprinkler system, selective reconstruction of walls in the entry wing, and voluntary seismic upgrades. An average cost of $225/square foot in renovation costs is anticipated; and

3. **New construction** – costs will be relatively high because new restrooms will be a significant part of the construction, new multi-purpose spaces are assumed to have acoustic partitions, and a significant amount of glass is assumed in the program spaces adjacent to landscape and courtyards. An average cost of $300/square foot for new construction is utilized.

Associating these costs with their respective square footages, the following construction cost estimate is obtained:

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost/Square Foot</th>
<th>Area</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>$7/SF</td>
<td>83,000 SF</td>
<td>$581,000</td>
</tr>
<tr>
<td>Renovation</td>
<td>$225/SF</td>
<td>9,000 SF</td>
<td>$2,025,000</td>
</tr>
<tr>
<td>Construction</td>
<td>$300/SF</td>
<td>7,000 SF</td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Rough Order of Magnitude Estimate</td>
<td></td>
<td></td>
<td>$4,706,000</td>
</tr>
</tbody>
</table>

The rough order of magnitude estimate is costly due to the fact that GGA is using a high contingency (25%) for the renovation portion of the project, due to the unknown conditions that may be encountered during construction. The actual conditions could possibly result in a renovation cost that is significantly less than indicated, but GGA has maintained the high cost estimate and contingency in the event that some of the worst-case scenarios are uncovered and require mitigation. This is an inevitable caution in renovation work.

While, typically, buildings of this age and type lack the general structural integrity and detailing to meet the requirements of the current Building Code, the portions of the existing building that are not affected by the renovation are not necessarily required to be upgraded to be in conformance with the requirements of the current Code. Based on the desire to provide for public health, safety, and welfare of Covina Senior and Community Center patrons, however, the City requested that GGA include the voluntary seismic upgrades to the existing building in the cost estimate.

In this scenario, wherein the City pursues voluntary upgrades, certain measures analyzing existing conditions are required by Code. The first measure is to analyze the existing drawings
to determine if stresses on structural members are acceptable per current Code. The second measure, where drawings are not revealing, is to initiate selective/investigative demolition to discover and analyze actual built conditions. Some of this investigation may involve a testing laboratory. Though retrofit design cannot be predicted without actually undertaking this process, there are common seismic renovation upgrades that are the outcome of this process for this type of building. Common upgrades include the following, which have also been included in the construction cost estimate:

- Add plywood sheathing on wood-framed shear walls;
- Re-roof with new plywood sheathing and nailing;
- Supplement the sill bolting of stud walls to concrete slab;
- Install hold downs at ends of wood-framed shear walls; and
- Provide straps/ties between exterior walls and roof diaphragm.

Comparatively, based on industry standards, the cost of new construction ranges between $300 and $550/square foot for facilities considered to be non-24 hour/essential facilities, such as the Covina Senior and Community Center. In addition, a 10% construction contingency and soft costs equivalent to 25% to 30% of the construction cost should be factored into the total project cost.

FISCAL IMPACT:
The fiscal impact associated with the Covina Senior and Community Center will be determined during the initial phase of the Covina Senior and Community Center Project, wherein GGA will develop conceptual designs, cost estimates, and project timelines, following the completion of user and programmatic needs assessments, community and internal engagement, site evaluation, and recommendation. An estimated $2.5 million in project funding is available for the placement of the facility in Kelby Park and at the site of the Covina Woman’s Club, consisting of $600,000 in Community Development Block Grant (CDBG) and $1.9 million in Los Angeles County Grant funds.

CEQA (CALIFORNIA ENVIRONMENTAL QUALITY ACT):
The project has been reviewed for compliance with the California Environmental Quality Act (CEQA) and is exempt per Section 15061 (b) (3). The project is covered by the General Rule that CEQA applies to projects that have the potential for causing a significant effect on the environment. The consideration of possible sites for the placement of the Covina Senior and Community Center will not result in any significant effect on the environment. Once a project site is selected, an Initial Study will be conducted to determine the level of environment assessment required for the project.

Respectfully submitted,

[Signature]
Siobhan Foster
Director of Public Works

ATTACHMENTS:
Attachment A: Covina Senior and Community Center Project Chronology
Attachment B: Covina Woman’s Club Physical Assessment for Adaptation to Covina Senior and Community Center
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 15, 2015</td>
<td>City Council received and filed the Joslyn Center update, authorized the City Manager to issue a Request for Proposal (RFP) to provide community and internal outreach to ascertain facility-user needs and Department of Parks and Recreation programming needs, in addition to obtaining City Council input in the design process for the Covina Senior and Community Center Project, and directed the Departments of Parks and Recreation and Human Resources to identify temporary locations to accommodate Joslyn Center programming requirements and initiate negotiations with property owners.</td>
</tr>
<tr>
<td>November 10, 2015</td>
<td>The Department of Public Works issued the RFP to Provide Planning, Programming, Architectural, and Engineering Services for the Initial Phase of the Covina Senior and Community Center Project to 18 firms with significant expertise in the design of municipal senior centers and recreational facilities and proven track records with both design-build and design-bid-build project delivery models. Consulting services for the initial phase of the Project include completion of user and programmatic needs assessments, community and internal engagement, site evaluation and recommendation, visioning and conceptual designs, cost estimates, and project timelines. The RFP was also posted on the City’s website. By 4:00 p.m. on December 3, 2015, the City of Covina City Clerk’s Office had received responses from seven firms.</td>
</tr>
<tr>
<td>December 15, 2015</td>
<td>The Department of Parks & Recreation reviewed and discussed options for the relocation of senior programming from the Joslyn Center to another facility, including the Valleydale Park Community Center and a possible co-sponsorship agreement with Los Angeles County for Valleydale Community Center.</td>
</tr>
<tr>
<td>January 19, 2016</td>
<td>The City Council, in a separate action, adopted Resolution No. 16-7452, authorizing the allocation of the Forty Second Year Community Development Block Grant (CDBG) funds for FY 2016-2017. This action includes $416,188 in funding for the Covina Senior and Community Center Project - Phase II. Funds will be released by Los Angeles County Community Development Commission once the design phase is complete.</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>January 19, 2016</td>
<td>The City Council authorized the City Manager to execute a Professional Services Agreement with Gonzalez Goodale Architects (GGA) to Provide Planning, Programming, Architectural, and Engineering Services for the Initial Phase of the Covina Senior and Community Center Project in an amount not-to-exceed $100,000; adopted Resolution No. 16-7454 appropriating $500,000 in available Special General Fund - Rule 20A Swap balance for the Initial Phase of the Covina Senior and Community Center Project, topographic survey and soils geologic analysis, and seed money for subsequent phases of the project; and directed City staff to pursue placement of the Covina Senior and Community Center in Covina Park.</td>
</tr>
<tr>
<td>February 6, 2016</td>
<td>The Department of Public Works issued RFPs to members of the City of Covina’s On-Call Engineering Services Bench for 1) the Covina Community and Senior Center Geotechnical Soils Investigation at Covina Park and 2) Covina Community and Senior Center Boundary and Topographic Survey at Covina Park. Following the review of the proposals received in the City of Covina City Clerk’s Office by 4:00 p.m. on February 18, 2016, David T. Hamilton & Associates, Inc. was identified as the top rated proposer for the Soils Investigation and Civiltec Engineering, Inc. for the Boundary and Topographic Survey. Neither Agreement was executed due to the subsequent change in site location.</td>
</tr>
<tr>
<td>February 16, 2016</td>
<td>Representatives from GGA updated the City Council on the initial Client Team Meeting held with City staff on January 26, 2016 and reviewed a working draft of the Community Participation Workshop #1 presentation, scheduled for February 22, 2016, from 9:00 a.m. to 11:00 a.m. at the Joslyn Center. During the Study Session, Gonzalez Goodale Architects also reviewed and received feedback from the City Council on the following: 1. Draft Project Guiding Principles; 2. The facility program; and 3. Initial site utilization/location studies.</td>
</tr>
<tr>
<td>February 16, 2016</td>
<td>The City Council adopted Resolution No. 16-7463, authorizing the termination of the Forty-First Year CDBG Project 600525-15, Economic Development and approved the new Covina Senior and Community Center construction project (Phase I). This action approved $202,309 in funding for the design phase of the project, effective through June 30, 2017.</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>February 22, 2016</td>
<td>The City and GGA hosted Community Workshop #1. Approximately 100 persons attended the workshop. Following the presentation of the items listed above, attendees offered numerous comments, largely focused on the concern of the possible placement of the new facility in Covina Park.</td>
</tr>
<tr>
<td>Community Workshop #1</td>
<td></td>
</tr>
<tr>
<td>February 23, 2016</td>
<td>Amy Hall-McGrade, Parks & Recreation Director and department staff engaged users of the Joslyn Center to gain a thorough understanding of their needs and expectations for the Covina Senior and Community Center. Joslyn Center users expressed the desire for windows, fresh air, and access to outside spaces, wide hallways, large restrooms, a design that fosters intergenerational exposure, and possible space for weight equipment and billiards, among other items.</td>
</tr>
<tr>
<td>Joslyn Center User Meeting</td>
<td></td>
</tr>
<tr>
<td>March 1, 2016</td>
<td>City staff and GGA representatives presented an update on the following: 1. Community engagement efforts; 2. Concept of increasing open space in Covina Park, should the facility be placed there, by eliminating/consolidating obsolete uses and moving softball activities to a refurbished Kelby Park; 3. How the City plans to address current parking deficiency and provide sufficient parking to support the new facility, if placed in Covina Park; and 4. Comparative architectural vernaculars consistent with Adams Park neighborhood that could be reflected in the new facility, should it be placed in Covina Park.</td>
</tr>
<tr>
<td>City Council Study Session</td>
<td></td>
</tr>
</tbody>
</table>

Extensive public comment was received at the March 1, 2016 City Council Study Session. The majority of the input expressed dissatisfaction with the possible placement of the Covina Senior and Community Center in Covina Park and suggested possible alternative sites, including the Covina Woman's Club and other parcels. Public comments of a similar nature were made at the March 1, 2016 City Council Meeting.
Multiple City department directors presented information on project chronology, site location alternatives, project funding, the draft space program for the new facility, and answered questions from the community. The majority of the City's presentation focused on the systematic assessment of eight possible sites for placement of the Covina Senior and Community Center, including (in alphabetical order):

1. Badillo Street/Downtown (135 E. Badillo Street);
2. Brunswick Bowling Alley (1060 W. San Bernardino Avenue);
3. Civic Center/State Building (233 N. Second Avenue);
4. Covina Park (303 S. Fourth Avenue);
5. Covina Woman's Club (128 S. San Jose Avenue);
6. Hollenbeck Park (1250 N. Hollenbeck Avenue);
7. Kelby Park (815 N. Barranca Avenue); and

Uniform criteria used to assess each of the possible site locations, included (in alphabetical order):

1. Adjacent land uses;
2. Economic impacts;
3. Environmental review (CEQA);
4. Location;
5. Lot size;
6. Other site consideration;
7. Parking;
8. Project funding;
9. Property ownership; and
10. Traffic safety.

Approximately 100 residents attended the workshop with many participating in the public comment period. Residents expressed concern with the possible placement of the facility in Covina Park, provided input on the alternative sites presented, and conveyed the need to move the project ahead swiftly regardless of site location.
April 5, 2016
City Council Meeting

The City Council received an update on the eight site location alternatives for the Covina Senior and Community Center listed above, each evaluated based on the criteria listed above. Following public input and discussion, the City Council unanimously moved to exclude four site locations from ongoing Covina Senior and Community Center project consideration:

1. Badillo Street/Downtown;
2. Brunswick Bowling Alley;
3. Covina Park; and

The City Council also directed staff to explore and exhaust all options, with both public and private property owners in Successor Agency Project Area One. This specific project area includes approximately $4.8 million funding opportunity in the Successor Agency. The City Manager temporarily placed the agreement with GGA on hold, pending site selection by the City Council. At that time, GGA had completed approximately 20% of the Scope of Services. Key remaining services include site evaluation and recommendation, conceptual designs, cost estimates, and timelines.

April 11, 2016
Community Workshop #3

City staff presented an update and received public comment on the four current site location alternatives, facility requirements, and the draft space plan.

August 18, 2016
Administrative Action

The City issued an RFP for preparation of the Joslyn Center Lead Paint, Mold, and Asbestos Investigation. The City issued the RFP to four firms with expertise in the completion of comprehensive building investigations to determine the presence, location, and quantity of lead paint, mold, and asbestos. The RFP was also posted on the City’s website. By 4:00 p.m. on September 15, 2016, the City of Covina City Clerk’s Office had received responses from two firms.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 7, 2016</td>
<td>Interim City Manager submitted $1.9 million in funding requests to Los Angeles County for the Covina Senior and Community Center project, at the request of Michael D. Antonovich, Los Angeles County Board of Supervisors, Fifth District. The letter requests $1.0 million in new funding plus the reallocation of two previously approved grants in the amount of $900,000, bringing the City of Covina's total funding request to $1.9 million.</td>
</tr>
<tr>
<td>September 14, 2016</td>
<td>Given the limited time available to formally submit the funding request to the Board of Supervisors for final approval prior to the departure of Supervisor Antonovich in November, the Interim City Manager identified Kelby Park as the site location for the Covina Senior and Community Center. The County indicated that a specific site had to be included in the City's funding request. Since the City owns and controls the Kelby Park site, City staff determined the best alternative was to identify Kelby Park as the location for the new center in the City's application.</td>
</tr>
<tr>
<td>Administrative Action</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>October 4, 2016</td>
<td>The City Council directed City staff to pursue the placement of the Covina Senior and Community Center in Kelby Park and at the site of the Covina Woman’s Club and adopted Resolution No. 16-7533 authorizing the application for $1.9 million in grant funds from the Los Angeles County Regional Park and Open Space District for Fifth Supervisorial District Competitive Excess Funding for the Covina Senior and Community Center Project.</td>
</tr>
<tr>
<td>City Council Meeting</td>
<td>The City Council also approved and authorized the Interim City Manager to execute on the City Council's behalf, in substantial form, the First Amendment to the Agreement between the City of Covina and GGA to (1) extend the term of the agreement through June 30, 2017, (2) amend the scope of work to (a) reflect the placement of the Covina Senior and Community Center at a location to be designated by the City Council and (b) prepare a General Building and Site Analysis of the Covina Woman's Club, (3) increase the total compensation by $20,000 to a not-to-exceed amount of $120,000, and (4) include provisions required for compliancy with federal law and CDBG requirements, subject to the City Attorney's review and approval as to form.</td>
</tr>
<tr>
<td>October 18, 2016</td>
<td>Los Angeles County Board of Supervisors approved a $1.9 million grant for the Covina Senior and Community Center proposed to be constructed in Kelby Park, including $1.0 million in new funding through the Los Angeles County Regional Park and Open Space District for Fifth Supervisorial District Competitive Excess Funding, plus $900,000 in dollars that were available to Kelby Park through the Fifth Supervisorial District pursuant to the Los Angeles County Safe Neighborhood Parks Proposition of 1996.</td>
</tr>
<tr>
<td>October 19, 2016</td>
<td>Interim City Manager authorized Agreement with Stearns, Conrad and Schmidt, Consulting Engineers Inc. (SCS Engineers) for Preparation of Joslyn Center Lead Paint, Mold, and Asbestos Investigation. Once the results of the lead paint, mold, and asbestos investigation are available, the City will prepare and advertise the Joslyn Center Demolition Project for bid.</td>
</tr>
<tr>
<td>December 2, 2016</td>
<td>SCS Engineers completed building survey at Joslyn Center, consisting of lead paint, mold, and asbestos investigations. Draft report expected the week of December 19, 2016.</td>
</tr>
</tbody>
</table>
CONSULTANT TEAM
Gonzalez Goodale Architects
135 West Green Street, Suite 200
Pasadena, California 91105
(626) 568-1428
Project Number 16790

KPFF - Structural Engineers
S & K Engineering - MEP Engineers
Table of Contents

INTRODUCTION
Scope and Purpose
Analysis Criteria

EXECUTIVE SUMMARY

SECTION 1: EXISTING CONDITIONS
Introduction

Zoning Assessment
Permitted Uses
Setbacks and Landscaping

Building Code Analysis

California Title 24 and Energy Use

Site Assessment
Building Arrival
Surface Parking Lot
Landscape and Site Drainage

Building Exterior Architecture
Main Courtyard
Roof
Wall Cladding
Exterior Doors and Windows

Building Interior Architecture
General Accessibility Note
Environmental Health Considerations
Entry Wing
Sunroom
Multipurpose Room
Kitchen Wing

Engineering Systems
Heating, Ventilating, Air Conditioning
Plumbing
Electrical and Lighting
Structural System

SECTION 2: RECOMMENDATIONS
Introduction

SCOPE AND PURPOSE
On October 4, 2016, Gonzalez Goodale Architects was commissioned by the City of Covina to provide a General Building and Site Analysis of the Covina Woman’s Club. This followed a brief conceptual site study that explored the spatial feasibility of expansion and renovation of the Club for a broader use as the new Covina Community & Senior Center.

The approximately 9,000 square foot Covina Woman’s Club was constructed in 1961. Building and safety codes in almost all categories have become significantly more stringent since that date. Additionally, aging architectural and engineering systems within the building will face replacement and repair needs as the building is adapted to new uses.

This study identifies those improvements, upgrades, and renovations that will be necessary and desirable to:

1. Adapt and update the functional performance of the building to suit safe, efficient, and enjoyable facility operations, achieving a level of improvement that could be reasonably expected to satisfy the Senior Center needs of the City, as applicable, for fifty years or more.
2. Adapt and update the interior and exterior architectural components and the engineering systems of the building to satisfy a minimum fifty-year performance level;
3. Where required, or otherwise deemed prudent, meet current fire/life-safety, structural/seismic, environmental, and accessibility requirements under applicable building codes, laws, rules, and regulations.

SCOPE AND PURPOSE
Following review of both the existing drawings and a tour of the facility, the building has been generally analyzed within the bounds of the following criteria:

1. **Zoning Codes.** The building has been evaluated according to current City of Covina Zoning Code.
2. **Fire/Life-Safety / Building Codes.** The building has been evaluated according to the 2016 California Building Code for issues of exiting and fire/life-safety in general. Considering has also been given to how a building addition might affect compliance with these codes.
3. **Energy Performance / Building Codes.** The building’s energy design and performance has been evaluated against the requirements of 2016 California Title 24, and Chapter 11, Green Building Standards. Upgrades will be required for any new components, and any of the components of the building that will be modernized.
4. **Site Conditions and Best Practices.** The site - including issues of pedestrian and vehicular arrival, drop-off, parking, site drainage, and landscape - has been evaluated according to California Title 24 accessibility requirements, wear/condition of various site components, professional experience of best practices, and aesthetic quality.
5. **Accessibility.** The building has been evaluated for accessibility as required by California Title 24 and Federal Americans with Disabilities Act. Accessibility includes access to building entries and exits, interior doors and occupied spaces, passageways, restroom fixtures and drinking fountains, counters, hardware, seating areas, and way-finding signage.
6. **Operational Analysis.** The floor planing has been assessed in the context of possible expansion against professional experience and best practices for Senior Center adjacencies and operations.
7. **Architectural and Engineering Components.** In addition to obvious defects, the documented or observed age and quality of architectural and engineering components has been assessed against occupant health and welfare, against professional experience, and against industry standards for wear and performance.

8. **Structural System.** In terms of structure and seismic performance, the building has been assumed to be Risk Category II, and evaluated against the criteria of this Category. This means that, in a seismic event, the building should be able to sustain the event and preserve the safety of the occupants. Structure should not be in danger of collapse, and affixed elements of the building should remain affixed. Under this category, however, there may be both structural and architectural damage, and the building may not be appropriate for immediate occupancy because of damage.
Executive Summary

OVERVIEW
While adaptation of the Covina Woman’s Club to an expanded facility that includes the Covina Community & Senior Center will require significant renovation of the existing building and its systems, the Woman’s Club is essentially a sound facility that can house City programs for at least another 50 years. In combination with an addition that is sensitive to the building’s architecture and functional adjacencies, the expanded Woman’s Club has the potential to successfully house the Covina Senior Center and be a handsome complement to the residential neighborhood in which it is seated.

ZONING CODE COMPLIANCE
A senior center type of use is permitted in this residential zone with a Conditional Use Permit. The specific conditions for this Conditional Use Permit will need to be developed through the course of planning and design with the City’s planning staff.

BUILDING AND SAFETY CODE COMPLIANCE
The major code compliance issues with renovating and expanding the Woman’s Club to a Senior Center will be the 2016 California Building Code’s limitations on building area for this occupancy and building type (one story, exposed wood frame construction). It is likely that the addition of a fire sprinkler system will be required in order to achieve the enlarged area required by the Community & Senior Center’s program.

Current building codes will also require updates to the exiting of the building’s assembly spaces, (the multipurpose room). These spaces will require panic hardware on all exit doors, with all of the exiting discharging directly to a public way or to a fire-rated exit-way.

ENERGY PERFORMANCE AND TITLE 24 COMPLIANCE
While the original building is, by inspection, not weather-insulated, there will be no requirement to insulate unless existing walls and roofs are disturbed. All new construction must be fully compliant with Title 24, including insulation, low-water use plumbing fixtures, electrical controls and lighting, and heating, ventilating, and air conditioning components.

ACCESSIBILITY
The most significant interventions in the interior architecture of the building will be upgrades necessary to make the building achieve full accessibility. These upgrades will include partial demolition/reconstruction of the entry wing of the building, new doors and lever or panic hardware throughout the building, new accessible restrooms with accessible fixtures, accessible drinking fountains, disabled access to the multipurpose room stage, new or re-configured casework to provide accessible-height countertops, new way-finding signage, and fire/life-safety interventions that provide alarm notification to all occupants, including the blind and deaf.
The SITE

Aside from deferred maintenance, the principal design issue with the existing site is the inaccessibility of the main entry to the disabled, either from the sidewalk or the porte cochere (where the building has a short stair to a raised porch).

There are also some minor challenges in achieving improved water drainage away from the building. Both of these site issues can be mitigated in conjunction with a building renovation and expansion.

Due to the amount of the parking required for the Woman's Club, and certainly for the Community & Senior Center programs, the current surface parking lot does not allow for landscape setbacks. This is especially notable at the front sidewalk. In a renovation, there may be alternate means of achieving some greening/landscaping of the parking lot without a sacrifice of parking spaces.

In re-developing the entire site plan, consideration should be given to providing more than code-required parking spaces for the disabled population, as the Community & Senior Center use may benefit from this surplus.

OPERATIONAL PERFORMANCE

The layout of the current building as a Woman's Club, with the Multipurpose Room anchoring two wings, (one kitchen/service wing and one entry wing), around a courtyard, is also well-suited to the organization of a Community & Senior Center. Additional program elements will need additional physical form to supplement this layout, but this can be achieved by selectively expanding the outer perimeter of the U-shaped building without compromising its basic, logical organization.

BUILDING ARCHITECTURAL ELEMENTS

While the underlying structure of the building is sound, the roofing,
(which is 20 years old), the exterior wood vertical wall-cladding, and the doors and windows of the Woman’s Club are all showing significant signs of wear and deterioration. Replacement of most of these exterior envelope components should be anticipated in a comprehensive renovation. There are also a number of instances of water damage to the building soffits under flat roof areas. Along with the re-roofing, these should be repaired and repainted.

In terms of the original 1961 interior building materials and their potential impact on health - either during demolition/construction or in the re-occupation of a renovated building - the City may elect to initiate a Hazardous Materials Summary Report, (HAZMAT), by an independent agency.

On the interior, there are multiple instances of acoustic ceiling tiles delaminating and falling from overhead. Replacement of the acoustic ceiling tiles with new ceiling finishes throughout is recommended.
Existing Conditions

INTRODUCTION
The Covina Woman's Club is located near downtown, southeast from Covina's City Hall, and is embedded in a residential neighborhood that includes single family dwellings to the north, west, and south, and 2-story multi-family dwellings to the east. The original Women's Center dates from 1961, with the addition of a porte cochere in 1991. The building is a unique institutional adaptation of low-slung ranch-style design, low-pitched, asphalt gable roofs giving way, at the gutter line, to near-flat gravel-roofed canopies, several of which form weather-covered walkways. In cross-section and elevation, this roof form makes a unique profile. The exterior walls are a combination of vertical wood cladding, fixed wood windows, and sliding aluminum doors.

One and 2-Story Residential Dwellings Surrounding the Site

1991 Porte Cochere Addition to Original Building

Combination of Low-Sloped Gables and Flat-Roofed Canopies

Vertical Wood Cladding

Woman's Club Functional Zones
While the building presents itself as a casual, sprawling composition of individual elements, in plan it is a simple U-shape, organized around a central outdoor courtyard. One leg of the "U" is a linear sequence composed of the porte cochere; an entry volume currently containing restrooms, dressing rooms, and office; and the sunroom. (Off of this leg to the west is a second low-walled courtyard). The opposite leg of the "U" is the kitchen and additional restrooms. Anchoring the "U" at its base is the Multipurpose Room. Parking occurs to the south of the building in an asphalt-paved surface lot. Service to the kitchen also occurs through the parking lot, with service access at the south wall of the kitchen wing.

The building's original structure is a combination of wood frame and steel pipe columns, with wood beams and tongue-and-groove wood decking. The building is not currently provided with a fire-sprinkler system.

ZONING ASSESSMENT

Permitted Uses
The zone for this site is R-1-7500. Permitted uses within this zone (with a Conditional Use Permit) include such similar uses as country clubs, churches, and educational institutions. (Parking is not included among these uses, however it is a logical supporting function to each of them.)

Setback and Landscaping
The zoning code addresses dwelling setbacks. Though these are not directly applicable in the case of a Conditional Use Permit, the existing building adheres to all residential setback requirements in the current code. There are no landscaping requirements noted in the zoning code, but it is notable that the current parking lot goes abruptly up to all three adjacent property lines (Reference #1, Image 1). This is likely due to parking requirements for events. The need for maximizing parking will likely continue with any joint use concept. However, alternative perimeter landscaping strategies should be considered.
BUILDING CODE ANALYSIS

The original building was constructed under codes in effect in 1960, and there have been few major alterations other than the 1991 porte cochere addition. With the potential addition of square footage for the new Senior Center, and significant renovation of building systems anticipated, it will be generally be necessary for the remodeled building to conform to current codes - including the 2016 California Building Code, (and its codification of the Americans with Disabilities Act), and California Title 24 energy-related regulations.

Most importantly, the expanded building must conform to allowable area and construction type as defined in the California Building Code. To do this, it is necessary to first project the total area of an expanded Senior Center Facility, including all potentially new program elements. Based on a balance between the Community & Senior Center Program and the capacity of the site, this projected total building area will be approximately 17,000 square feet.

The current building Construction Type, per the 2013 California Building Code, is Type V-B. This construction type is a wood frame, with unprotected/exposed structure. It is not fire-sprinklered. The occupancy for the Community & Senior Center will combine "multipurpose assembly," (A-2 occupancy), with "offices, training, and higher education" (B occupancy). The averaged basic allowable building area for these occupancies in this construction type is 6,600 square feet.
However, the Code allows for increases in allowable area if there is adequate permanent open space surrounding the building - ('yards') - and if the building is fire-sprinklered. In order to reach an allowable area of 17,000 square feet, both of these measures must be counted. In short, the building must be fire-sprinklered.

Another significant plan intervention that must be undertaken to fulfill the Building Code's exiting requirements will be to insure that all of the A-2/assembly occupancies have panic bars on their exits, and that all of these exits proceed directly to a rated exitway or to the exterior of the building.

Building Envelope and California Title 24

Both the original drawings and external observation suggest that this building is not insulated in either the wall planes or the roof planes. While Title 24, (which regulates energy-related design), requires both to be insulated under current code, walls and ceilings in a renovated building are only required to be insulated when there is intervention in that specific component. Thus, the extent to which existing walls and roofs are retroactively insulated will be at the discretion of the City.

All new additions and systems within the building must be fully compliant with Title 24. This includes insulation, low-water usage plumbing fixtures, electrical and lighting, and heating/ventilating/air conditioning systems. Specific requirements are further developed within the Engineering Systems narrative below.

SITE ASSESSMENT

Building Arrival

Vehicular arrival and parking is accessed by one of two driveways, one to the far south of the lot, and one adjacent to the building. Vehicles entering via this northerly driveway have the option to proceed to the right into the parking lot or to proceed forward under a porte cochere to drop off or pick up passengers. The site was originally designed with an exclusive focus on vehicular arrival, as there is no walkway from the sidewalk to the formal building entry. From the sidewalk, pedestrians must share the same vehicular driveway to the porte cochere as cars do (Reference #2, Image 2). This does not meet current California Building Code accessibility, nor exiting codes, which require that occupant path of travel be separated from vehicular.

Further, the raised plinth/porch - which is ascended by a stair from the porte cochere - is not currently accessible by the disabled. (Reference #3, Image 3).

Surface Parking Lot

While this lot has apparently had previous asphalt patches and surface coatings, there is long-term deep cracking penetrating through the asphalt continuously throughout the lot (Reference #4, Image 4).
Where the asphalt meets landscaped areas, there is no hard, defined edge, making the maintenance of both the asphalt and the landscaped areas more difficult. This also presents a less-than-crisp aesthetic (Reference #5, Image 5).

Landscape and Site Drainage
With the exception of the mature trees that grace the site, the landscape is generally aged and has not had the best of maintenance (Reference #6, Image 6). The north field area in particular shows an absence of maintenance and watering (Reference #7, Image 7).

The site drains from north to south. Historically, it appears that this has exposed the north wall of the multipurpose room to significant water exposure and damage (particularly evident in the northeast exit door) (Reference #8, Image 8). As noted above, it is also concerning that some areas of the central courtyard appear to flatten out.

BUILDING EXTERIOR ARCHITECTURE
Building Courtyard
While the courtyard slopes generally to the south, there also appear to be areas where the drainage flattens out, resulting in standing water in heavy rains. Additionally, one segment of concrete in the courtyard has been replaced by a colored concrete that is mis-matched with the surrounding concrete (Reference #9, Image 9).

Building Roof
The last re-roofing was in 1996 and there is no extant warranty. Many of the sloped-roof shingles show signs of surface cracking along their length. There are also two major areas on the roof that are inundated with organic debris from overhanging trees - a condition which generally shortens the performance life of the roof (Reference #10, Image 10). The undersides of many of the gravel canopy roof areas show water damage, likely indicating an exhausted roof membrane (Reference #11, Image 11). However, it is also possible that this damage was incurred under a previous roof. In any event, with a 20 year life and major construction anticipated, this roof appears near the end of its performance.

There is minor damage to the porte cochere beam on the easterly edge (Reference #12, Image 12).

Finally, the roof cantilevers (overhangs) at the corners of the buildings are showing visible signs of minor sagging/deflection (Reference #13, Image 13). This is a cosmetic problem, rather than one of structural safety, and a subtle, but evident sign of building aging. (This is not likely to be a remediable problem without complete re-framing of the roof).

Building Cladding
The building walls are clad in tongue-and-groove vertical wood siding, with recessed joints. This siding has been painted. In most areas of the building...
Building Exterior Doors and Windows
The exterior doors in the building are a combination of solid core wood, aluminum sliding glass doors, and aluminum and glass storefront doors. All of the exterior aluminum on both the storefront and sliding doors shows significant surface aging and pitting (Reference #17, Image 17). The wood doors - while still serviceable - also show significant deterioration of their veneer wood (Reference #18, Image 18). The exception to this is the northeast multipurpose exit door: Apparently due to water flow from the field area in heavy rains, this door is wholly deteriorated.

Windows in the building are primarily wood, fixed sash windows. Most of these windows line the two courtyards, and show some dry rot at their base condition (Reference #19, Image 19). Their age and condition (flaked paint and gray exposed wood), also suggest that their weather-tightness is questionable (Reference #20, Image 20). All of the building's windows are single-glazed. If they are retained or re-conditioned, this may be code-acceptable; but, if replaced, they will need to be double-glazed and comply with current Title 24 energy-related regulations.

there is visible checking and cracking of the wood surface (Reference #14, Image 14); and, in almost all areas of the building, the base of the wood, where it is near the ground, has deteriorated from dry rot (Reference #15, Image 15).

Due to a robust long-term program of termite inspection and treatment, there are no immediately-apparent signs of termite damage to the wood. This is a significant indicator of the building's capacity to be serviceable into a 50-year horizon.

The trellis system on the west side of the building is showing considerable warping, bending, and splitting of the wood members. The gazebo anchoring the west courtyard, while grayed and unpainted, is in otherwise firm condition (Reference #16, Image 16).
BUILDING INTERIOR ARCHITECTURE

General Accessibility Note
In discussing each zone of the building, specific barriers to full accessibility will be noted below. In addition, a global note regarding accessibility is that very few of the doors in the building have accessible, lever-activated hardware. And, in the case of the A occupancy multipurpose room and main building entry that connects to it, code-required push-panic-hardware is also not provided. Further, the doors from the Entry to the Sunroom require too much force for a disabled person to open. Specific additional accessibility issues will be noted below, per building zone.

Environmental Health Considerations
In the era when this structure was built, some common construction materials have since been determined to contain hazardous substances.

Common hazards of older building materials include the following:

1. Lead is found in paint; ceramic tile, plumbing pipes, solder, connectors; roof flashings; and in fasteners; mostly in buildings constructed before the mid-1970s.

2. Asbestos is found in insulation, boilers, pipe covering, plaster, vinyl floor tile, glazing compound, caulking compound, roofing materials, drywall board and taping compound, linoleum, flooring and other adhesives, acoustical materials, fireproofing insulation, and exterior siding materials. Most asbestos found in buildings occurred before the mid-1980s, although some imported materials still contain it today.

3. Polychlorinated biphenyls (PCBs) are found in caulking, electrical transformers, light fixture ballasts, and in other electrical equipment. Although PCBs have not been used in the United States in new electrical equipment for more than 20 years, equipment containing PCBs is still in use.

4. Asbestos and lead are not required to be removed unless it will be disturbed during the renovation or demolition. The Air Quality Management District states there is no known health threat if asbestos-containing materials are in good condition and left undisturbed.

5. Before proceeding with demolition or new construction it is customary to identify potential areas that may be impacted by the project, collect and analyze representative samples of building materials, identify materials that may be problematic (i.e., mercury in fluorescent light bulbs), and assess the effect of these materials on the proposed project scope, schedule, and budget.
The Entry Wing (Reference #21, Image 21)
The 1,340 square foot entry component has apparently been renovated over the years, including a renovation which provided one (vastly over-sized) accessible unisex toilet room (Reference #22, Image 22). The overall planning of this wing, which includes a greeting office, significant corridor, restroom, and dressing room space, appears to be highly inefficient. Additionally most of the finishes in the lobby, restrooms, and dressing rooms are aged and dated (Reference #23, Image 23).

Specific accessibility problems include the non-unisex toilet rooms. The maneuvering clearance required for accessible operation of doors is not provided for upon restroom entry (Reference #24, Image 24). Similarly, toilet stall dimensions and overall restroom maneuverability also frustrate accessibility. The office service / greeting window to the lobby is not accessible, its approximately 3’ height sill being too high for service to wheelchair-bound building users (Reference #25, Image 25).

Because of the combined issues of planning inefficiency, inaccessibility, and exhausted finishes and fixtures that show significant wear, a complete interior gutting and re-planning of this wing would appear to have merit.
The Sunroom (Reference #26, Image 26)
The 875 square foot Sunroom is a fully connecting space between the Entry Component and the Multipurpose Room. While this open-plan adjacency may have been perfectly functional in the context of a Woman's Center, the room's continuous openness to the lobby and its exiting relationship to the Multipurpose Room may prove to be more problematic for a Community & Senior Center, where discrete, separable program functions tend to be desirable.

The exposed wood beam and tongue and groove wood deck ceiling in the Sunroom space, while low in height, provide a sense of warmth and character. This roof/ceiling assembly is in reasonably good condition (Reference #27, Image 27).

The Sunroom’s walls are composed of the wood fixed glass windows noted above. The replacement of these windows may also provide a corresponding opportunity for re-definition of the room’s exterior boundaries to achieve both exiting function for the Multipurpose Room and gain additional enclosed program space.

The Multipurpose Room (Reference #28, Image 28)
The 4,285 square foot Multipurpose Room focuses on a raised stage of 1,110 square feet. The room’s shape follows the shape of the gable-roof above, with exposed wood rafters and 12" x 12" acoustic tile adhered directly to the underside of the roof deck between them (Reference #29, Image 29). The acoustic tiles are delaminating and falling off.

The Multipurpose Room floor is concrete slab on grade. However, under certain areas of the floor is a concrete ducting system, carrying conditioned air distribution to floor-grilles. The finish floor of the room is vinyl tile (which a Woman’s Club staff member indicates was installed in the year 2000). This tile shows visible blistering, especially in the areas that are directly above the under-floor ducting system (Reference #30, Image 30).

The raised maple-floored stage is flanked by two stairs, but is not accessible to the disabled (Reference #31, Image 31).
As an A occupancy, all exit doors from the Multipurpose Room are required to have panic hardware (push-bars), which they currently do not. And each exitway is required to have a rated exit to the exterior. This is not currently the case with the exit doors that open into the Sunroom, and similarly, it is not the case where the room exits into the kitchen wing hallway. (This is because the kitchen’s roll-down separation door is not fire rated, but is simply a wood security panel). In the case of a building modification, both these conditions will need to be mitigated.

Kitchen Wing (Reference #32, Image 32)
The 1,425 square foot Kitchen Wing contains a full kitchen cook and service areas, prep and wash areas, storage areas and restrooms (which are not accessible by the disabled). The kitchen’s ceiling tile is delaminating across the entire ceiling. The floor sealer is worn down to bare concrete in many places. The main sink is not accessible to the disabled in terms of height and knee room. There is no fire suppression system under the main cooking hood.

ENGINEERING SYSTEMS

MECHANICAL SYSTEMS
Women’s Club staff indicate that the current air conditioning system dates from 2005-2007.

Entry Wing
This area has no existing cooling. It is served by a wall furnace for heating.

Sunroom
This area has no existing cooling. It is served by a wall furnace for heating.

Multipurpose room
1. This area is served by a built up air handling unit located in the northwest corner mechanical room outside the multipurpose room. The air handling unit is more than 30 years old. It has a single fan - belt drive and a modified DX refrigerant coil along with a duct mounted gas heater (Image 33).

2. The DX coil is served by two condensing units located above the roof of the mechanical room. One of the condensing units is 7.5 tons and another one is 8 tons capacity (Image 34).
3. Condensate from coils is disposed into a floor sink located next to the air handling unit.

4. The current configuration of the air handling unit is non-code compliant as it has a heating coil on the duct downstream of cooling coil. However, if heating and cooling is not run simultaneously, it is acceptable to continue to use this configuration.

5. Existing air distribution is under-floor type with supply and return ducts running below the floor and serving through various grilles located on the floor. Insulation was not verified as it is not visible.

6. The outside air damper may be adequate for minimum fresh air intake based on Title 24 (Image 35). However, there is no economizer control at the unit. It is a constant volume unit.

7. The through-the-wall gas heater which serves the Multipurpose Room is very low in energy efficiency (Image 36).

Kitchen

1. The existing grease hood is served by an exhaust fan above the room (Image 37). The existing grease exhaust duct was not verified as it is not visible.

2. The existing grease hood does not have any fire suppression, which is required by the current 2013 California Mechanical Code.

3. The existing dishwasher has a dedicated exhaust (Image 37).

4. There is an existing make up air fan for the kitchen but the air is not conditioned.
PLUMBING SYSTEMS

Entry Component
This area has a small water heater located in a closet with non-insulated hot water pipes serving various fixtures. Existing water heater is small at 30-gallon capacity. As noted in the Accessibility section above, there is only one unisex restroom that provides accessible fixtures. While in good condition, all of the existing fixtures do not comply with current Title 24 water use requirements.

Kitchen and Adjacent Restrooms
1. Kitchen has a 200,000 btu/h input, 100 gallon domestic water heater serving all kitchen fixtures and restrooms.

2. There is no ventilation provided for combustion air per current California Plumbing Code requirements.

3. All existing fixtures and sink are in good condition (Images 38, 39).

4. Waste and vent piping are not visibly verified.

5. Building has a gas meter located on the east side.

6. An ice machine is located near the kitchen and has a dedicated floor sink.

7. The age or condition of the existing dishwasher is not verifiable (Image 40).

8. The existing grease hood is served by an exhaust fan above the room (Image 41). The existing grease exhaust duct was not verified as it is not visible.
ELECTRICAL SYSTEMS
Southern California Edison (SCE) currently serves the entire facility from their electrical room located north of the Multipurpose Room. There are two overhead feeds to the building (Image 42). The (2) Over Head feeds serve two ‘Zinsco’ Switchboards (Image 43). These consist of the following:

1. 120/240V, 3Phase, 3Wire - Feeding a 400A rated section. The section has its own meter. Per the as-built, ‘Switchboard -1’ is rated at 120/240, 3Phase, and is limited to 225A.

2. 120/240V, 1Phase, 3Wire - Feeding a 400A rated section. The section has its own meter. Per the as-built, ‘Switchboard -2’ is rated at 120/240, 1Phase, and is rated and sized at 400A.

Branch circuit panels are served from the 120/240V-1Phase Section. The 120/240V-3Phase panel serves all other equipment loads, such as the mechanical units, kitchen equipment and motors.

Existing lighting is a mixture of compact fluorescent, fluorescent, and incandescent. There is no evidence of emergency egress fixtures. Outdoor lighting consists of two dual head, ‘Cobra Head’ site lighting fixtures, compact fluorescent wall sconces, surface mount square fixtures, compact fluorescent downlights and tungsten halogen floodlights.

STRUCTURAL SYSTEMS
Summary
KPFF provided a general structural assessment of the existing Covina Woman’s Club facility. The structural assessment was performed to determine what structural upgrades may be required to convert the building into a Senior Center. Prior to converting or renovating the existing building into a Senior Center, several structural issues should be considered, as described herein. Typically buildings of this age and type lack the general structural integrity and detailing to meet the requirements of the current Building Code, however portions of the existing building that are not affected by the renovation are not necessarily required to be upgraded to be in conformance with the requirements of the current Code. The overall required amount of engineering analysis/justification and strengthening retrofit will depend upon the planned alterations to the building, as well as the existing condition of the structure once it is fully exposed, and will need to be further developed and discussed with the City to determine the best project-specific approach. For a summary of findings, see the RECOMMENDATIONS section of this report.

Basis of Assessment
This report represents a general structural overview of the building’s current condition, and potential seismic considerations in regard to its future use. The report provided herein is based on the structural observations from the site visit performed by KPFF Consulting Engineers on October 11, 2016. Assumptions regarding the future use of the building are based on the conceptual architectural plan provided by Gonzalez Goodale Architects. Additionally, existing floor plans and details for the original construction of the building dated 1960, as well as for a later Porte Cochere addition dated 1991, were reviewed. A site geotechnical report was not available for review by KPFF at the time of this report.
At the time of the site visit, much of the structure was covered, as existing wall finishes and ceilings are still in place, therefore much of the wall framing and roof framing could not be observed. Portions of the existing structure that were exposed were the masonry walls near the existing Stage, the canopy immediately to the south of the existing Multipurpose Room, the glulam beams in the Multipurpose Room, a portion of the roof structure at the Storage Room off of the Auditorium, and the wood framing at the roof of the Covered Passage. The general overview, findings, and/or recommendations presented herein are based solely on field observations of the exposed structural elements during the site visit, and KPFF's engineering experience with similar building types and conditions. Engineering calculations and/or quantitative analyses of building structural elements were not performed for this assessment.

Existing Building Structural Description (Image 44)

The existing building is a one-story structure, consisting mostly of Type V wood construction, however some masonry and steel framing can be observed. The total square footage of the existing building is approximately 9,600 sq. ft. and the building is currently being used as a Women's Club, including an Multipurpose Room, Kitchen, Covered Passage, Foyer, Powder Rooms, Restrooms, and Storage Rooms that appear to have been constructed in 1960. An attached Porte Cochere is also present at the front of the building, which appears to have been constructed in 1991. The building is situated on a relatively flat lot, and no seismically separation joints were observed.

The roof structure of the building appears to be primarily wood-framed. The roof of the Porte Cochere is gabled at the center and flat at the edges, and consists of 2" tongue and groove decking, supported by 4x8 wood joists at 5'-0" o.c. and steel W10x15 beams on the east and west edges (Image 45). The roof of the Foyer portion of the building is gabled (Image 46) and consists of 3/8" plywood sheathing over 2x8 rafters, with 2x8 ceiling joists below, however this framing was not visible at the time of visit and therefore could not be visually verified. 2x12's serve as the ridge beam for this area per the as-built drawings dated 1960. The roof framing at the Kitchen is similar to this, per the 1960 as-built drawings, however this area was also not visibly exposed at the time of visit. At the Covered Passage, 2x6 tongue and groove decking is supported by 4x12 beams at approximately 8'-4" o.c. (Image 47). The roof of the Multipurpose Room consists of 3/8" plywood sheathing over 2x8 rafters at 6" o.c. supported by approximately 31-inch deep, tapered, gabled, continuous glulam beams at 15'-0" o.c. (Image 48). Steel rods are present below the glulam girders, spanning
below the arching portion of the glulam, and attached to each end of the glulam with hold downs (Image 49). It is not clear when these rods were installed, as they are not shown on the 1960 or 1991 as-built drawings.

The roof framing is typically supported by rectangular steel tube columns or wood bearing walls. The wood bearing walls consist of 2x vertical studs spaced at 16" o.c., and most are covered with gypsum board as noted on the 1960 as-built drawings. At some locations, specifically around the Stage at the Multipurpose Room and in the Foyer portion of the building, the roof framing is supported by 8-inch thick reinforced masonry walls per the 1960 as-built drawings (Image 50).

The floor structure consisted of 4" thick concrete slab on grade per the 1960 as-built drawings. The slab was covered in most areas with flooring however the polished concrete surface was exposed in the Kitchen. Per the 1960 as-built drawings, concrete trenches are present below the slab on grade in the Kitchen and Multipurpose Room. These rooms also have several expansion joints in the slab on grade, and at these locations cracking was noted in the exposed flooring. The Stage platform and the stairs leading up to it from the Multipurpose Room floor appeared to consist of wood framing. The platform elevation was approximately 3'-6" higher than the Multipurpose Room floor.

The existing foundations were not exposed at the time of the visit; however per the 1960 as-built drawings they appear to be conventional shallow, continuous concrete footings with a minimum of one (1) bar of longitudinal reinforcement along their length, and no transverse reinforcement is shown.

POSSIBLE ARCHITECTURAL ADDITION

Based on a preliminary architectural floor plans proposed by Gonzalez Goodale Architects, (Image 52), an approximately 4,200 sq. ft. addition is proposed on the north end of the existing site, immediately adjacent to the Multipurpose Room Storage Areas. This addition includes two new Multipurpose Rooms, a Warming Kitchen, and Large Storage Room. It is recommended to separate this new addition from the existing structure with a structural seismic separation joint, to avoid imposing additional forces on the building elements of the existing building. The addition would be designed as an independent structure, and it is recommended that care be taken to avoid undermining existing building foundations while excavating for the new construction.

Per the same drawing referenced above, a new Billiards Room is proposed within the existing Covered Passage. The Billiards Room would be located on the east half of the Covered Passage, and would extend the roof line approximately six feet to the east. If the new Billiards roof is not laterally supported on four sides, the new roof will need to be tied in to the existing roof. To accomplish this, light gauge straps or hold downs may be used. The existing roof will need to be verified and possibly retrofitted to distribute the lateral forces to the nearest adjacent shear walls. Alternatively, if the new roof is supported laterally on four sides, it will not impose lateral loads onto the existing roof and forces will not be transferred to existing shear walls.

Image 51
In the Foyer portion of the building, the area that currently serves as a Men's Toilet room would be renovated into a Conference Room. The demising walls do not appear to be shear walls or bearing walls per the 1960 as-built drawings, therefore it is assumed that a seismic analysis will not be required. New walls may be non-bearing partitions.

EXISTING BUILDING ASSESSMENT

The exposed structural elements of the building were observed for any signs of damage from past seismic activities in the Los Angeles area, and for other signs of structural deterioration and/or distress. Generally speaking, the building appears to be in good structural condition. The existing slab on grade exhibited minor surface cracks throughout, the largest of these occurring in the Kitchen (Image 53). Cracks in the flooring were also observed where the slab on grade expansion joint occurs in the Auditorium. The small cracks are likely due to concrete shrinkage due to temperature fluctuation, and the larger cracks may be due to ground movements. These types of cracks are common in buildings of this age.

The interior and exterior wall finishes were observed, and did not exhibit obvious signs of distress; however some locations did appear to have water damage. The finishes mainly consisted of wood siding and stucco. The existing masonry walls were also observed, and appeared to be in good condition.

At the low canopy immediately adjacent to the Multipurpose Room, the beam line at the edge of the canopy appeared to be out of plumb. These beams exhibited splitting along their length at some locations, and water damage was apparent. The underside of the 2x6 tongue and groove decking also exhibited signs of damage at this location.
POTENTIAL STRUCTURAL DEFICIENCIES

In general, the life-safety performance of one-story Type V buildings such as this has been historically sound. In past seismic events, the majority of the damage to existing buildings of this type was exhibited in nonstructural elements such as building finishes, ceilings, etc. The most common structural deficiencies that have been seen in buildings of this type are inadequate strength and stiffness of existing shear walls, inadequate shear anchorage to the foundation, and lack of complete load path for the lateral force resisting system. Typically buildings of this age and type lack the general structural integrity to meet today’s higher seismic standards.

Per review of the 1960 as-built drawings, the amount of rebar in the existing masonry walls and concrete footings would not be in conformance with the minimum reinforcement requirements of the current Building Code, as the minimum area and spacing requirements are not satisfied. This does not necessarily indicate that these footings and walls do not meet the strength requirements necessary to resist vertical and lateral loads, however further structural analyses would be required to verify that the current reinforcement and footing sizes provided are capable of resisting the forces prescribed by the current Building Code. Depending upon the extent of renovations planned for the building, in-depth analyses and existing structure verification may not be expressly mandated by the Code, unless the City chooses to perform voluntary seismic upgrades.]

Based on studying the overall building plan, it also appears that the building can be classified as having a Type 2 Horizontal Structural Irregularity per ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, as the building has several re-entrant corners. When this type of structural irregularity is present in a building, the current Code provisions require the building to be analyzed and designed for 25% higher force demands if a global seismic analysis is performed on the building.

BUILDING CODE STRUCTURAL REQUIREMENTS

For purposes of future planning, changes to the use or occupancy of the building, as well as structural renovations (additions or alterations) to the existing building, are subject to the requirements set forth by the governing building code and the building official. In this case, the building appears to be under the jurisdiction of the City of Covina building and Safety Department, and the 2013 California Building Code (CBC). Some of the relevant requirements set forth by the 2013 CBC for alterations to an existing structure can be summarized as follows:

2016 CBC Requirements for Change of Occupancy and Risk Categories

For structural purposes, when the change in occupancy or use of the building results in a structure being reclassified to a higher Risk Category, the structure is required to conform to the seismic requirements for a new structure of the higher Risk Category. It appears that the Risk Category will not be affected if the use of this building changes from a Women’s Club to a Senior/Community Center. Therefore, it does not appear that the Code mandates a seismic upgrade due to its change of occupancy. Refer to Section 3408.1 of the 2014 CBC for more information:

a) 2013 CBC Section 3408 – Change of Occupancy
 Section 3408.1 – Conformance: “...Subject to the approval of the building official, the use or occupancy of existing buildings shall be permitted to be changed and the building is allowed to be occupied for purposes in other groups without conforming to all the requirements of this code for those groups, provided the new or proposed use is less hazardous, based on life and fire risk, than the existing use.”

 Section 3408.4 – Seismic: "When a change of occupancy results in a structure being reclassified to a higher risk category, the structure shall conform to the seismic requirements for a new structure of the higher risk category."
b) 2016 CBC Table 1604.5 – Risk Category Classifications
(See Table below):

<table>
<thead>
<tr>
<th>RISK CATEGORY</th>
<th>NATURE OF OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Buildings and other structures that represent a low hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Agricultural facilities.</td>
</tr>
<tr>
<td></td>
<td>- Certain temporary facilities.</td>
</tr>
<tr>
<td></td>
<td>- Minor storage facilities.</td>
</tr>
<tr>
<td>II</td>
<td>Buildings and other structures except those listed in Risk Categories I, III and IV.</td>
</tr>
<tr>
<td></td>
<td>Buildings and other structures that represent a substantial hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures whose primary occupancy is public assembly with an occupant load greater than 500.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures containing educational facilities, secondary school or day care facilities with an occupant load greater than 250.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures containing adult education facilities, such as colleges and universities, with an occupant load greater than 500.</td>
</tr>
<tr>
<td></td>
<td>- Group I-2 occupancies with an occupant load of 50 or more resident care recipients but not having surgery or emergency treatment facilities.</td>
</tr>
<tr>
<td></td>
<td>- Group I-3 occupancies.</td>
</tr>
<tr>
<td></td>
<td>- Any other occupancy with an occupant load greater than 5,000.</td>
</tr>
<tr>
<td></td>
<td>- Power generating stations, water treatment facilities for potable water, waste water treatment facilities and other public utility facilities not included in Risk Category IV.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures not included in Risk Category IV containing quantities of toxic or explosive materials that exceed maximum allowable quantities per control area as given in Table 307.11.1 or 307.12.2 or per outdoor control area in accordance with the California Fire Code.</td>
</tr>
<tr>
<td></td>
<td>- Exceed maximum allowable quantities per control area as given in Table 307.11.1 or 307.12.2 or per outdoor control area in accordance with the California Fire Code, and are sufficient to pose a threat to the public if released.</td>
</tr>
<tr>
<td>III</td>
<td>Buildings and other structures designated as essential facilities, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Group I-2 occupancies having surgery or emergency treatment facilities.</td>
</tr>
<tr>
<td></td>
<td>- Fire, rescue, ambulance and police stations and emergency vehicle garages.</td>
</tr>
<tr>
<td></td>
<td>- Designated earthquake, hurricane or other emergency shelters.</td>
</tr>
<tr>
<td></td>
<td>- Designated emergency preparedness, communications and operations centers and other facilities required for emergency response.</td>
</tr>
<tr>
<td></td>
<td>- Power generating stations and other public utility facilities required as emergency backup facilities for Risk Category IV structures.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures containing quantities of highly toxic materials that exceed maximum allowable quantities per control area as given in Table 307.11.1 or 307.12.2 or per outdoor control area in accordance with the California Fire Code, and are sufficient to pose a threat to the public if released.</td>
</tr>
<tr>
<td></td>
<td>- Aviation control towers, air traffic control centers and emergency aircraft hangars.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures having critical national defense functions.</td>
</tr>
<tr>
<td></td>
<td>- Water storage facilities and pump stations required to maintain water pressure for fire suppression.</td>
</tr>
</tbody>
</table>

2016 CBC Requirements for Structural Additions and Alterations

Proposed additions or alterations to a structure may trigger a seismic evaluation/retrofit if the additions or alteration exceed certain limits as stipulated in the Code.

Per 2016 CBC Sections 3403.4 and 3404.4, in regard to the seismic system, additions and alterations to the existing structure are permitted without requiring the entire structure to comply with current Code provisions (only new/added elements must comply) if the following conditions are met:

1) The additions/alterations do not increase the demand-capacity ratio in any existing lateral load-carrying element by more than 10 percent considering the cumulative effect of additions and alterations since original construction; and 2) The alterations do not result in a structural irregularity as defined by ASCE 7.

Per 2016 CBC Sections 3403.3 and 3404.3, for the gravity system, additions or alterations to the existing structure that increase the gravity load on any gravity load-carrying element by more than 5 percent require further structural analysis and possible strengthening of the affected element in conformance with current Code requirements. Additions or alterations to the existing structure that increase the capacity of an existing gravity load-carrying element also require further analysis and possible strengthening in conformance with current Code.
2016 CBC Requirements for Voluntary Seismic Improvements

The extent of the voluntary upgrades is typically at the discretion of the City. If the City elects to do voluntary seismic improvements, thoughtful consideration is required to determine the seismic performance objective and how to meet said objective.

If the final proposed additions and alterations to the existing building do not trigger a seismic analysis or retrofit of the existing structure per Section G.2 above, the City may elect to implement voluntary seismic improvements to improve the performance of the existing structure. The voluntary seismic improvements shall be designed and detailed in conformance with the requirements of the current Code. Refer to Section 3404.5 of the 2016 CBC:

Voluntary Seismic Improvements:

"Alterations... or additions... that are initiated for the purpose of improving the performance of the seismic force-resisting system of an existing structure... shall be permitted, provided that an engineering analysis is submitted demonstrating the following:

1. The altered structure and the altered nonstructural elements are no less conforming with the provisions of this code with respect to earthquake design than they were prior to the alteration.
2. New structural elements are detailed as required for new construction.
3. New or relocated nonstructural elements are detailed and connected to existing or new structural elements as required for new construction.
4. The alterations do not create a structural irregularity as defined in ASCE 7 or make an existing structural irregularity more severe."

2016 CBC Requirements for Historic Buildings

If the existing building is designated as having historical significance, the building official may grant leniency in regard to the strict adherence to the 2013 CBC per the following section of the Code:

2016 CBC Section 3409 – Historic Buildings
Section 3409.1 – Historic buildings:
"The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard."
Recommendations

ZONING CODE RECOMMENDATIONS

1. Engage the City of Covina Planning Department in a discussion of process towards either amending or establishing a Conditional Use Permit for the expanded Senior Center.

BUILDING CODE RECOMMENDATIONS

1. Incorporate a fire sprinkler system into the building, both to increase fire/life-safety, and to allow a increase in building area to that required for a full Senior Center Program.
2. For life safety and code compliance, provide exiting from the Multipurpose Rooms, (and from new Multipurpose Rooms), either direct to daylight or to rated exit-ways. Provide panic hardware on all exits from assembly spaces.
3. Provide a fire suppression system over the main stove in the kitchen.

ENERGY PERFORMANCE AND TITLE 24 COMPLIANCE RECOMMENDATIONS

1. In the course of evaluating and replacing ceiling systems that are not aesthetically exposed wood decking, consider introducing new roof insulation over the new ceiling systems.
2. Design all new enclosure systems to comply with Title 24 requirements, including requisite wall/roof insulation and insulated glass for new openings.
3. Provide low-water use plumbing fixtures in compliance with Title 24.
4. Provide electrical control systems and new lighting in compliance with Title 24.

SITE RECOMMENDATIONS

1. Provide direct accessible walkway from the public sidewalk to the main entry of the building.
2. Provide a vehicle-separated, accessible pedestrian entry/exit path to and from the main building entry to and from the public sidewalk.
3. Provide weather-covered accessibility by the disabled from the vehicular drop-off area up to the entry plinth / porch and main building entry.
4. Due to the extensive deep cracking, it is recommended that the parking lot asphalt be removed and replaced.
5. Increase accessible spaces beyond that required by code, (appropriate to a Senior Center), and develop compliant path of travel from spaces to building entry.
6. Develop positive site drainage throughout the site, and comply with California storm water regulations and mitigating the flow of storm water drainage into the streets and city storm sewer systems.
7. Replace color-mis-matched concrete section in the main courtyard. Sawcut and reseal along cracked joints in the courtyard concrete.
EXTERIOR ARCHITECTURE RECOMMENDATIONS

1. Re-roof existing facility and repair, repair water damage to plaster soffits. Sand and refinish water damage to wood soffits.
2. Repair and repaint minor damage to porte cohere fascia.
3. Replace and refinish wood siding with either similar wood siding or new building cladding.
4. Replace worn trellis members and refinish.
5. Due to pitted and worn condition of most of the window systems, replace exterior glazed openings with insulated glass systems, compliant with Title 24.
6. Replace exterior doors due to finish wear.

INTERIOR ARCHITECTURE RECOMMENDATIONS

1. Replace all hardware with lever-operated hardware.
2. Provide push/panic hardware where required related to assembly occupancy exiting.
3. Due to inefficiency and inaccessibility of much of the Entry Wing, consider a complete re-planning/re-design of this interior space to better suit the Senior Center program.
4. In ceiling areas with adhered 12" x 12" tile, including the Multipurpose Room and Kitchen, replace with new ceiling systems appropriate to acoustics and health/safety, respectively.
5. Re-design access to the stage to make it accessible to the disabled.
6. Provide a fire suppression system for the kitchen hood.
7. Re-finish kitchen floor.

MECHANICAL SYSTEM RECOMMENDATIONS

Recommendations for existing spaces:

1. The existing Multipurpose Room air handling unit and condensing units have passed their useful life. Replace with a new air handling unit and condensing unit. The new unit should be a high efficiency Variable Air Volume DX air handler.
2. Abandon or remove all ductwork below floor and replace it with new overhead ducting for better cooling performance and fan power savings.
3. The Entry Component should be provided with roof mounted package unit or a split system to provide cooling into occupied spaces.
4. Enclosed Sunroom should be provided with split system or package unit for air conditioning.
5. New units shall have 100% economizer mode with demand-controlled ventilation. Larger openings to the outside will be required to take in outside air.
6. New ductwork shall have variable air volume units to serve north south exterior zones.
7. Kitchen exhaust fan shall be replaced with combo make up air exhaust fan system.
8. Kitchen grease hood shall be replaced with code compliant Type I hood with fire suppression system.
9. Existing grease duct shall be verified for code compliance and shall be replaced if required to upgrade to latest code.
10. New makeup air unit should be provided with pre-treatment DX coil for outside air to maintain habitable temperature in kitchen.
11. Verify all toilet room exhaust fans for code compliance.
Recommendations for new spaces:

1. The new Multipurpose spaces shall be served by two separate package units, one for each room.
2. Package unit should be high efficiency (16 SEER) with VFD on supply fan and variable scroll compressor to turn down during unoccupied or part load.
3. Package unit should have 100% modulating economizer with power exhaust and shall be controlled using demand-controlled ventilation.
4. New building plumbing design shall be done based on new code requirements.
5. Gas should be provided to new warming kitchen and new package units.

PLUMBING SYSTEM RECOMMENDATIONS

Recommendation for existing building:

1. Existing hot water lines should be insulated.
2. Existing kitchen should be provided with additional floor drain.
3. Existing grease interceptors should be verified for capacity based on new requirements.
4. Proper ventilation should be provided for each water heater.
5. Existing plumbing fixtures, lavatories, and toilet flush valves should be upgraded to latest code for water savings measure.

Recommendations for new spaces:

1. New waste line and new water line will be required for new building.
2. The new addition could be provided with a new water and gas meter or the existing can feed the new building.

ELECTRICAL SYSTEM RECOMMENDATIONS

Switchboard

1. Zinsco electrical equipment is considered obsolete. Aftermarket replacements for Zinsco breakers are available, however, it may be more cost effective simply to replace the entire panel with a more modern and safer design from another manufacturer such as Eaton, GE, Siemens or Square D.

Lighting

1. Convert all lighting in building to LED and provide networked lighting controls throughout.

Current Title 24 Code Compliance

1. Disaggregation of electrical loads is required. (Buildings must be wired to separate electrical loads by types). For example, separate feeders and panels need to be available for lighting, outlets, equipment loads, and HVAC loads respectively.

1. Mandatory lighting controls are also required. The detailed requirements for these controls are as follows:
 - Area Controls: Manual controls that control lighting in each area separately.
 - Multi-level Controls: Dimmability, allowing occupants to choose the appropriate light levels for each area.
STRUCTURAL RECOMMENDATIONS

Based on field observations of exposed structural elements, engineering judgment, and experience with similar building types, the following statements describe findings and recommendations related to the building's present condition:

1. Typically buildings of this age and type exhibit general structural deficiencies and lack the general structural integrity to meet today's higher seismic standards. Based on general assessment of the building, several potential deficiencies were identified. In order to improve the seismic performance of the building, a seismic retrofit of the building will likely be required, however depending upon the extent of alterations this may be determined at the discretion of the City.

2. Based on understanding of the intended use of the building, it does not appear that the current Building Code mandates a seismic upgrade due to the change of use of the building from a Women's Hall to a Senior Center, as the Risk Category will remain the same. Therefore, the building may not require a global seismic evaluation and upgrade unless the proposed additions or alterations affect the lateral force resisting system of the building. Please also note that requirements and considerations for a change of use or occupancy of a building are ultimately subject to the review and approval of the local building official.

3. The City may consider implementing voluntary seismic improvements to improve the seismic performance, considering the age of the building. Based on this building type, the highest priority voluntary improvements may include, but are not limited to:

a. Plywood sheathing on wood-framed shear walls.
b. Roof diaphragm sheathing and nailing.
c. Sill bolting at all bearing walls and shear walls to existing concrete slab/foundations. Sill bolting appears to be installed in this building per the 1960 as-built drawings, therefore this may only consist of verifying that the existing condition is sufficient and may not require that new sill bolts be installed:
d. Hold downs at ends of wood-framed shear walls.
e. Strapping/ties from exterior walls to roof diaphragm.
f. Diaphragm collectors and their connections to shear walls.
g. Concrete foundations.

Note that the extent of the voluntary upgrades will be at the discretion of the City. Further discussion is required to determine the seismic performance objective, and thoughtful consideration between the City and Engineer will be required to determine what the desired improvements may be.

4. If a Code-mandated or voluntary structural retrofit is implemented, the following steps may be required:

a. Engineering analysis of the structure to determine the appropriate type of retrofit.
b. Investigative selective demolition throughout the building may be required to verify items that are not shown on the as-built drawings.
c. A testing program and engagement of a testing laboratory may
be needed for materials testing, in order to obtain concrete compressive strength, steel strength, bolt grades, etc.

d. Retrofit design and detailing will be required, as determined by aforementioned engineering analysis of the building.

5. We recommend further investigation of the existing structure to determine the presence and/or extent of water-damaged elements, as water damaged building finishes were observed at several locations throughout the building. This investigation may involve demolition of the existing ceilings and gypsum board to view the structure.

6. We recommend replacement in kind or further investigation/analysis of the wood beam supporting the low canopy immediately adjacent to the Auditorium, as it exhibited signs of structural damage. We also recommend that the connection from this beam to the steel post be replaced, as distortion and rust were observed.

7. The architectural concept for the new proposed additions will likely require modifications to the existing roof of the Covered Passage where the new Billiards room is to be located. If the new roof is not laterally supported on four sides, the new roof will need to be tied in to the existing roof. To accomplish this, light gauge straps or hold downs may be used. The existing roof will need to be verified and possibly retrofitted to distribute the lateral forces to the nearest adjacent shear walls. Alternatively, if the new roof is supported laterally on four sides, it will not impose significant lateral loads onto the existing roof and significant forces will not be transferred to existing shear walls.

8. The architectural concept for the new proposed additions indicates two new Multipurpose Rooms, as well as a Warming Kitchen and Large Storage Room to be added at the north end of the existing site. The total square footage for these rooms is approximately 4,200 sq. ft. We recommend separating this portion of the structure from the existing with a structural seismic separation joint, to avoid imposing additional forces on the existing building elements. The addition should be designed as an independent structure, and care should be taken to avoid undermining existing building foundations when excavating for the new construction.

9. Prior to progressing into the Construction Documents phase of a proposed renovation, it is recommended that a meeting with the Building Department be scheduled to review the overall project and engineering approach and reach an agreement regarding the extent of required analysis, upgrades and/or retrofit. The specific enforcement of certain Code requirements and stipulations will need to be discussed and confirmed with the building official once the building program is better defined.
Preliminary Cost Estimate

This section considers construction costs anticipated to renovate and add to the Woman’s Center in order to achieve a well-functioning and aesthetically-integrated Senior Center.

At this early stage of analysis and planning, these numbers must be considered as a rough order of magnitude estimate, which will require refinement and confirmation through the design process.

This estimate is projected for building renovation and construction costs only. It does not include anticipated and necessary ‘soft costs’ that will be borne by the City, (e.g. fees, testing, City project management costs, furniture, fixtures, and equipment).

In order to approach this estimate, anticipated per-square-foot costs are established in three categories:

- Site
- Renovation of the existing Woman’s Club Building
- New construction

In order to arrive at per-square-foot numbers for each of these components, a combination of current industry costs for similar types of construction, current industry costs for major components to be deployed in a renovation, and current industry costs for sitework are considered. The figures are based on prevailing wage, and include approximately 25% additional for both contingency and escalation.

The following considerations were included in developing these per-square-foot cost averages:

Site work costs will include re-asphalting the parking, new landscaping and irrigation. An average of $7/square foot is anticipated to cover overall site re-surfacing and landscaping, new parking/site lighting, minor re-grading for storm water, and provision for accessibility from sidewalk to entry porch.

Renovation work costs are assumed to include new exterior windows, doors, and cladding, new wall insulation, new roof, new modifications to support accessibility, new door hardware throughout, significant new floor finishes, new ceilings, new lighting and electrical control systems, new mechanical and fume hood systems, new fire sprinkler system, selective reconstruction of walls in the Entry Wing, and voluntary seismic upgrades*. An average cost of $225/square foot in renovation costs is anticipated.

New construction costs, will be relatively high - because new restrooms will be a significant part of the construction, because new multi-purpose spaces are assumed to have acoustic partitions, and because a significant glass is assumed in the program spaces adjacent to landscape and courtyards. Thus, a per-square-foot cost of $300/square foot for new construction is assumed.

Associating these costs with their respective square footages, the following construction cost estimate is obtained:

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Per-SF Cost</th>
<th>Square Feet</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Costs</td>
<td>$7/SF</td>
<td>83,000 SF</td>
<td>$581,000</td>
</tr>
<tr>
<td>Renovation Costs</td>
<td>$225 SF</td>
<td>9,000 SF</td>
<td>$2,025,000</td>
</tr>
<tr>
<td>New Construction Costs</td>
<td>$300 SF</td>
<td>7,000 SF</td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Total Rough Order of Magnitude</td>
<td></td>
<td></td>
<td>$4,706,000</td>
</tr>
</tbody>
</table>

*Because there is no change in building use category, the Building Code does not mandate these upgrades. Only if voluntary upgrades are pursued - at the discretion of the City - then certain measures analyzing existing conditions are required by code. The first measure is to analyze the existing
existing drawings to determine if stresses on structural members are acceptable per current code. The second measure, where drawings are not revealing, is to initiate selective / investigative demolition to discover and analyze actual built conditions. Some of this investigation may involve a testing laboratory. Though retrofit design cannot be predicted without actually undertaking this process, there are common seismic renovation upgrades that are the outcome of this process for this type of building. Common upgrades include the following - which have also been included in our assumed construction cost:

- Add plywood sheathing on wood-framed shear walls.
- Re-roof with new plywood sheating and nailing.
- Supplement the sill bolting of stud walls to concrete slab.
- Install hold downs at ends of wood-framed shear walls.
- Provide straps/ties between exterior walls and roof diaphragm.